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Mass flow rate for nearly-free molecular slit flow 

By J. DANIEL STEWART 
Aerospace Corporation El Segundo, California 

(Received 18 April 1968) 

The local and average mass flow rates for nearly free molecular flow through a 
two-dimensional slit are determined for several tank pressure ratios. The equi- 
librium gas in the two tanks and the container walls are assumed to be at  the 
same temperature and the Willis iterative method with the Bhatnager-Gross- 
Krook model is used for the analysis. The results for an infinite pressure ratio are 
also presented in order to illustrate the effects of a finite pressure ratio. 

1. Introduction 
Liepmann (1960) has pointed out that orifice or slit flow offers the possibility 

of comparing theory and experiment without having to assume a particular gas- 
wall interaction model. The local and average mass flow rates for these two flow 
problems have been determined theoretically by Willis (1965) for the case of an 
infinite pressure ratio. Previously, Narasimha (1961) had obtained an expression 
for the average mass flow rate based on the centreline value for a circular orifice. 
Both authors used the Willis (1958) iterative method. The purpose of the present 
work is to  determine the effects of a finite pressure ratio on the local and average 
mass flow rates for nearly free molecular flow through a two-dimensional slit for 
an isothermal system , i.e. the equilibrium gas temperatures in the two tanks and 
the container wall temperature are assumed to be equal. The Willis iterative 
method is also used here. 

The physical problem considered in this paper consists of the flow of gas be- 
tween two reservoirs which, respectively, contain gas in equilibrium with tem- 
perature T and pressures p ,  and p, ,  as shown in figure 1. The opening between 
the two reservoirs is in the form of a two-dimensional slit and the walls separating 
the two reservoirs are of infinitesimal thickness. The velocity distribution func- 
tion in each reservoir is assumed to be the Maxwellian distribution function 
corresponding to  the appropriate reservoir densities and temperature. 

2. Analysis 
Iterative form of the Boltzmann equation 

Willis’s iterative form for the Boltzmann equation for a finite total collision 
cross-section can be expressed as follows: 
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where f (s, 5,) is the local velocity distribution function, s is the spatial vector, 
I& is the molecular velocity in the (x,y)-plane, and ds’ and ds” are differential 
quantities measured along the line specified by the angle a, as illustrated in figure 1. 
The superscripts (1) and (0 )  denote the first and zeroth iterations, respectively; 
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FIGURE 1. (a )  Schematic diagram of the two-dimensional slit. ( b )  Illustration of velocity 
co-ordinate system. 

the zeroth iteration is the free-molecular solution. The functions Po)(s’) and 
f (so,  5,) D(O)(s’) represent the production and loss, respectively, of molecules 
with velocity g, due to collisions, and the molecular speed is denoted by &.. The 
vector so represents a point on the boundary and f (so, 5,) is the corresponding 
distribution function. The boundary distribution functions are taken as the 
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Maxwellian equilibrium distribution functions for the tanks. These are given by 

f ( s o  = 00, a, &, 6) = ni(2nRq)-% exp [ - (6, + q2 + c2)/2Rq],  ( 2 )  
where ni and are the number density and temperature, respectively, and are 
equal to n1 and Tl for. - in < a < 8;. and n, and T, for +n < a  < #n, R is the gas 
constant, and 6, q, and 6 are the molecular velocity components in the 5-, y -  and 
x-directions, respectively. The assumption of an isothermal system (i.e. !PI = T2) 
will be delayed until later. Polar co-ordinates s’ and a with origin at 2 = 0 and y ,  
as illustrated in figure 1, have been introduced and the boundary condition is 
satisfied at  infinity for simplicity. It should be noted that for rays specified by 
a such that the container walls which lie in the plane of the slit are approached, 
the boundary condition given by ( 2 )  is still applied. It can be shown that the 
limiting case in which the rays coincide with the container walls is not im- 
portant since there is no contribution to the mass flow for the first iteration. 

The evaluation of Po)(s’) and D(O)(s’) can be greatly simplified by replacing the 
Maxwell-Boltzmann collisional operator with the simple statistical operator 
suggested by Bhatnager, Gross & Krook (1954): 

D(O)(s’) = vno (3) 

and Po)(s’) = vno2(h0/n)*exp [ - ho(?&- W O ) ~ ] ,  (4) 
where hO = (2BTo)-l, v is a constant, and no, wo and To are the free-molecular 
values for the local number density, macroscopic velocity, and temperature, 
respectively. 

It is convenient to introduce the following definitions: 

N,? EE no/ni, B: = ho/hi, Ci = htg,, ( 5 4  

Wf = (7: = h i e ,  Cq = hi(6:++52), ( 5 b )  
- 

where the subscript is either 1 or 2 denoting the upstream and downstream tanks, 
respectively. The parameter 8, is the inverse Knudson number based on one-half 
the slit width, i d .  Narasimha (1961) has determined the constant v by requiring 
the collision frequency per unit volume in the undisturbed gas to be consistent 
with the B-G-K model. Willis (1965) introduced the Chapman-Enskog viscosity 
to show that this leads to Si = Rei/2 42. 

Since moments of equation (1) are of interest, simplification can be made by 
integrating the molecular velocity component in the z-direction over the full 
range (i.e. - co to +a). Thus, define 

(6) 

and 

where i = 1 for - +n < a < +n and i = 2 for in < a < #n. Combining equations 
(1) to (6) and letting so -+ 00, the first iteration for the reduced distribution func- 
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tion can be expressed as 

It should be noted that N,O(Z’, a),  Bg(S’, a ) ,  etc., are also functions of y, the non- 
dimensional spatial co-ordinate, which is given by y/d.  Equation (9) can be 
applied directly to determine the local mass flow rate from the appropriate 
velocity moment. 

Local and average mass $ow rates 
The local flow rate is defined as follows: 

Introducing (9) with i = 1 for - in- < a < &i- and i = 2 for in < a < # 7 ~ ,  the 
local flow rate can be expressed as the sum of the upstream and downstream 
flows; that is 

where 7iZf1)(jj) and k.J1)(y) are defined as follows: 

7iZ‘l’(jj) = 7iZp’(y) +7iZp(y), (11) 

The average mass flow rate through the slit can then be obtained by averaging 
the local values across the slit. Making the assumption of an isothermal system 
the Reynolds number based on the downstream flow properties, Re,, can be 
related to the upstream Reynolds number, Re,, by the product of the pressure 
ratio. 

Free-molecular solution 
The free-molecular solution for a two-dimensional slit can be obtained as a limit- 
ing case from the solution given b y  Stewart (1967) for two-dimensional channels 
of arbitrary length. The results are as follows: 
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illustrated in figure 1 and are given by the following expressions 

tana; = [S’sina-(y+4)]/Sf cosa, (18) 

tan a: = [S’ sin a - (ij - +)]/3’ cos a. (19) 

The expressions for a; and a:, as shown in figure 1, can be obtained from (18) and 
(19) by replacing 3’ with (3’ - S”). 

Evaluation of the integrating factor 
Introducing (17) into the integral of the integrating factor, as given in (9), and 
performing the integrations yield 

!;N;(3’’, a)&” = (1 -p2/p1){jSf - [E(3’, a )  - D@’, a)]/2n) + 3’pJp1, (20) 

wherej = 1 for -4. < a < $7 a n d j  = 0 for in < a < @, and 

E(S’,a) = ~(?j-$){cosa[21n Is-+] -In/ [S’~ina-(5j-ij)]~ 

+ 5‘2 cos2 a]] - 2 sin a[tan-l (tan a) + tan-l([s’ - (a - +) sin a]/(jj - $) cos a)]> 

+S’tan-l([S’sina- ( ~ - + ) ] / S ’ c o s a ) .  (21) 

The expression for D ( 3 ,  a) can be obtained from (21) by replacing (B- 4) with 

Evaluation of the remaining integrals 
The only integrals encountered in evaluating h t ) ( y )  and d;)(y)  which offered 
more than routine difficulties were of the form 

(Y + +f.  

-ln(a, b )  = xn exp ( + bx - ax - 2 2 )  dx. 
/om 

By comparing (9), (12) and (13), it can be seen that this type of integral occurs 
when the integrations with respect to molecular speed are performed. 

For the case where b = 0 and a 2 0, the integral given by ( 2 2 )  can be evaluated 
with an error of less than ? 2 x by using the expressions given by Willis 
(1960). For the case when b + 0 and a 2 0,  the integral can be evaluated by a 
method given also by Willis (1964). The results obtained by this method for 
0 < a < 20 and - 2 < b < 2 were compared with the numerical results of Chahine 
& Narasimha (1963) for n = 0 , l  and 2, and found to be in good agreement. The 
latter results are reported to be accurate to better than eight places. For the 
problem considered here, the range of b was - 2.0 < b < 1.2. Thus, based on the 
results of the cornpaxison discussed above for this range, the method of Willis 
provided accurate results. This comparison is discussed in greater length by 
Stewart (1967) and numerical values for the results of the comparison are 
presented. 

The remaining integrals were evaluated by numerical quadrature. The 
Gauss-Laguerre quadrature was used for part of the 5‘ integration, and the 
regular Gauss quadrature was used for the remainder of the 5‘ integration and the 
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a integration. Since the integrand has a sharp peak for small I‘ and asymptotic- 
ally approaches zero for larger I’, it was found that very accurate results could 
be obtained by dividing the 3’ integration into two parts. Finally, the average 
flow rate was determined by applying a Simpson integration for the local values 
at five points across half of the slit. 

3. Results 
The results for the local mass flow rate are presented in figure 2 for pressure 

ratios of 2, 100 and infinity, and Reynolds numbers ranging from zero to 6.4. 
The local flow rate is non-dimensionalized with the constant free-molecular flow 

Reynolds numbers the local flow rate is almost constant across the entire slit. 
For larger Reynolds numbers the local flow rate is still essentially constant near 
the centre of the slit, but near the edge of the slit it drops off rapidly due to the 
shielding effect of the slit walls. The results for the infinite pressure ratio, as 
shown in figure 2 (c ) ,  werecompared with thegraphicalresultsofWillis (1965). The 
agreement was good everywhere except at  the edge of the slit, where the results 
differed by as much as approximately 15 yo for a Reynolds number of 6.4. For 
the smaller Reynolds numbers of 3.2, 1.6, 0-64 and 0.32, the results differed 
by 4.3, 4.0, 2.0 and 2.2 %, respectively. It should be noted, however, that the 

rate (&,p - &.m. ), and is presented for only one-half of the slit. For very small 

FIGURE 2(a). Non-dimensional local mass flow rate for various Reynolds numbers and a 
pressure ratio, pJpZ = 2.0. 0, calculated points. 
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FIGURE 2 ( b ) .  Non-dimensional local mass flow rate for various Reynolds numbers and a 
pressure ratio, p J p ,  = 100. 0, calculated points. 
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FIGURE 2 (c) .  Non-dimensional local mass flow rate for various Reynolds numbers and a 
pressure ratio, p1/p2 = 00. 0, calculated points. 
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integrating factor has been analytically evaluated for the results reported herein 
and that the numerical quadrature is considered more accurate than that used 
by Willis. 

The average flow rates, non-dimensionalized with the upstream free-molecular 
values, are plotted in figure 3 versus the Reynolds number for pressure ratios of 
2.0, 100 and infinity, and in figure 4 versus the pressure ratio for Reynolds num- 
bers of 0,0.05,1.0 and 6.4. The results for Re = 0 correspond to the free-molecular 
values. The linearized expression for the average flow rake as given by Willis 
(1965) is also shown in figure 3. The constant a2 was evaluated for a Reynolds 
number of 0-05. It is interesting to note that the best agreement occurs for the 
smallest pressure ratio and that the results for the full first iteration are always 
higher than the linearized results. 

1.2 I I I I I I I I 

Re,, Reynolds number 

FIGURE 3. Non-dimensional average mass flow rate versus Reynolds number for soveral 
pressure ratios. - - - 9 dl) ave /hirn. - - - (~JpdH1 +%a log, 011 ; a = Re1/2J2. 

PIIP2 UJ 100 2 
a2 - 0.147 - 0.140 - 0.221 

It is apparent that the average flow rate increases with Reynolds number. 
Although it is not shown, a slight maximum occurred a t  a Reynolds number 
of approximately 4.5 for finite pressure ratios. However, the iterative method is 
specifica,lly designed for small Reynolds numbers, so any conclusions drawn from 
the results for a Reynolds number of 4-5 or greater would be purely speculative. 
Note in figure 4 that the average flow rate increases quite rapidly for small 
pressure ratios and quite slowly for large pressure ratios. The maximum average 
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flow rates for an infinite pressure ratio are also shown in figure 4 in order to illus- 
trate how insensitive the average flow rate is with pressure ratio at  large pressure 
ratios. 
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FIGURE 4. Non-dimensional average mass flow rate versus pressure ratio for several 
Reynolds numbers. 0 ,  calculated points; - - - , vacuum limit, p J p Z  = 03. 

The non-dimensional average mass flow rate for an infinite Reynolds number 
has been calculated by Frank1 (1947) for a specific heat ratio of 1.4. He obtains 
a value of 1.46. Note that this value is significantly higher than the nearly free 
molecular values presented in figures 3 and 4. 
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